zero-failure reliability - translation to ρωσικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

zero-failure reliability - translation to ρωσικά

A SUB-DISCIPLINE OF SYSTEMS ENGINEERING THAT EMPHASIZES DEPENDABILITY IN THE LIFECYCLE MANAGEMENT OF A PRODUCT OR A SYSTEM
Reliable system design; Reliability theory; Reliability testing; Reliability theory (engineering); Reliability modelling; Reliability (engineering); Experimental reliability; Software reliability; Critical failure; Reliability Engineering; Point of failure; Points of failure; Single point of contention; Reliability modeling; Systems reliability; Inter-method reliability; Parallel-forms Reliability; Inter-method variation; Reliability level; User:Stochastikon-bernoulli/Reliability Level; Reliability Level; Reliability engineer; Reliability Engineer; History of reliability engineering; RDF2000; Reliability test
  • A fault tree diagram
  • A reliability block diagram showing a "1oo3" (1 out of 3) redundant designed subsystem

zero-failure reliability      

нефтегазовая промышленность

надёжность, обеспечивающая безотказную работу

reliability test         

общая лексика

испытание на надежность

строительное дело

испытание на надёжность

нефтегазовая промышленность

испытания на надёжность

проверка надёжности

проверка безотказности

reliability modeling         

нефтегазовая промышленность

моделирование надёжности

Ορισμός

Антагонистические игры
(матем.)

понятие теории игр (см. Игр теория). А. и. - игры, в которых участвуют два игрока (обычно обозначаемые I и II) с противоположными интересами. Для А. и. характерно, что выигрыш одного игрока равен проигрышу другого и наоборот, поэтому совместные действия игроков, их переговоры и соглашения лишены смысла. Большинство азартных и спортивных игр с двумя участниками (командами) можно рассматривать как А. и. Принятие решений в условиях неопределённости, в том числе принятие статистических решений, также можно интерпретировать как А. и. Определяются А. и. заданием множеств стратегий игроков и выигрышей игрока I в каждой ситуации, состоящей в выборе игроками своих стратегий. Таким образом, формально А. и. есть тройка ‹А, В, Н›, в которой А и В - множества стратегий игроков, а Н (а, b) - вещественная функция (функция выигрыша) от пар (а, b), где а A, b В. Игрок I, выбирая а, стремится максимизировать Н(а, b), а игрок II, выбирая b, - минимизировать Н (а, b). А. и. с конечными множествами стратегий игроков называются матричными играми (См. Матричные игры).

Основой целесообразного поведения игроков в А. и. считается принцип Минимакса. Следуя ему, I гарантирует себе выигрыш

точно так же II может не дать I больше, чем

Если эти "минимаксы" равны, то их общее значение называется значением игры, а стратегии, на которых достигаются внешние экстремумы, - оптимальными стратегиями игроков. Если "минимаксы" различны, то игрокам следует применять смешанные стратегии, т. е. выбирать свои первоначальные ("чистые") стратегии случайным образом с определёнными вероятностями. В этом случае значение функции выигрыша становится случайной величиной, а её Математическое ожидание принимается за выигрыш игрока I (соответственно, за проигрыш II). В играх против природы оптимальную смешанную стратегию природы можно принимать как наименее благоприятное априорное распределение вероятностей её состояний. В А. и. игроки, используя свои оптимальные стратегии, ожидают получения (например, в среднем, если игра повторяется многократно) вполне определённых выигрышей. На этом основан рекуррентный подход к динамическим играм в тех случаях, когда они сводятся к последовательностям А. и., решения которых можно найти непосредственно (например, если эти А. и. являются матричными). А. и. составляют класс игр, в которых принципиальные основы поведения игроков достаточно ясны. Поэтому всякий анализ более общих игр при помощи А. и. полезен для теории. Пример такого анализа даёт классическая Кооперативная теория игр, изучающая общие бескоалиционные игры через системы А. и. каждой из коалиций игроков против коалиции, состоящей из всех остальных игроков.

Лит.: Бесконечные антагонистические игры, под ред. Н. Н. Воробьева, М., 1963.

Н. Н. Воробьев.

Βικιπαίδεια

Reliability engineering

Reliability engineering is a sub-discipline of systems engineering that emphasizes the ability of equipment to function without failure. Reliability describes the ability of a system or component to function under stated conditions for a specified period of time. Reliability is closely related to availability, which is typically described as the ability of a component or system to function at a specified moment or interval of time.

The reliability function is theoretically defined as the probability of success at time t, which is denoted R(t). This probability is estimated from detailed (physics of failure) analysis, previous data sets or through reliability testing and reliability modelling. Availability, testability, maintainability and maintenance are often defined as a part of "reliability engineering" in reliability programs. Reliability often plays the key role in the cost-effectiveness of systems.

Reliability engineering deals with the prediction, prevention and management of high levels of "lifetime" engineering uncertainty and risks of failure. Although stochastic parameters define and affect reliability, reliability is not only achieved by mathematics and statistics. "Nearly all teaching and literature on the subject emphasize these aspects, and ignore the reality that the ranges of uncertainty involved largely invalidate quantitative methods for prediction and measurement." For example, it is easy to represent "probability of failure" as a symbol or value in an equation, but it is almost impossible to predict its true magnitude in practice, which is massively multivariate, so having the equation for reliability does not begin to equal having an accurate predictive measurement of reliability.

Reliability engineering relates closely to Quality Engineering, safety engineering and system safety, in that they use common methods for their analysis and may require input from each other. It can be said that a system must be reliably safe.

Reliability engineering focuses on costs of failure caused by system downtime, cost of spares, repair equipment, personnel, and cost of warranty claims.

Μετάφραση του &#39zero-failure reliability&#39 σε Ρωσικά